
��������	�
��

Automated creation of KF rules

Dipl.-Ing. Guido Klette
Prof.-Dr. Sándor Vajna
Chair of Information Technologies in Mechanical Engineering
Institute of Engineering Design
Otto-von-Guericke University
Magdeburg
GERMANY



Agenda

· research activities
· introduction
· process
· logging
· action
· rule creation
· example
· summary



Research activities

Product Modelling
Feature-based design, Parametrics

Autogenetic
Design Theory

Process Models for
Product Development / Engineering

CAD/CAM Metrics

Integrated
Product Development

Economical Benefits
of New Technologies

Knowledge Application
in Product Development



Introduction

the need
· Classical approach in product development
· Parametric CAD/CAM systems help to do

· Transfer this to product data definitions
· Create CAD data with:

less cost 
less time 
sufficient quality

minimize costs

minimize time

maximize quality



Introduction

Today’s factors
· Parametric CAD/CAM systems for easy changes
· Rule based design (design logic etc.)
· KF applications to fulfill quite specific design tasks with high engineering design knowledge 

effort
· EDM/PDM systems to manage CAD/CAM data and other related documents
· EDM/PDM systems to manage design work flows, product structures, users and rights, etc.
· Interfaces to several CAD/CAM systems for data exchange
· CAD data quality checker (VDA-Checker, Check-Mate, etc.)

Missing
· Identification of the needs designers have while designing without exhausting meetings, 

surveys or long lasting implementation strategies in companies
· CAD data quality checks to follow best practices in companies
· Self extending CAD system rules to automate routine design tasks without 

heavy application engineering effort
· Design complexity logging algorithms for possible cost estimation while designing



Introduction

Characteristics of design
· Designing seems to be chaotic and hard to forecast
· It’s hard to find patterns in the usage of CAD functions and 

features

Examples of standard functions and features:
· Part new, part open, use of features, use of parameters, save 

as…, add components, change/delete features
· Timestamp order, can be changed
· Feature Dependency Browsers
· Use of EDM/PDM system information



Process of self based rule creation

Rule
Templates

Definition of 
Rules and Classes

Action of 
firing a rule

Interpretation of 
Logs

Logging designers
work

Designers work

Supply UG with
new classes

Usage of 
new Classes

Visible to designer
Background process



Logging

Different ways of logging:
· Event based logging 

When designers use functions (Save, Check, after certain 
time, after certain amount of features built in, etc. )
· KF-Log (scan parts for new geometry – ug_cycleobjectsby…() )
· KF-Application Log (write log-routines for your KF applications, 

database entries)
· Call specific KF design analysis functions (manually or 

connected)

· Continuous logging
All the time, when the designer uses the CAD system
· Unigraphics Log-File (hard to interpret, ask GTAC?)
· Write separate log file as it is needed 



Action

Question:· When a user-process should fire a new rule? · What will the new rule include?· How to make sure, that no self-induced rules are 
fired?

In terms of continous logging:· Looking for patterns in the chaos to create a defined 
rule

In terms of event based logging:· New rules can be fired connected to specific events 
or manually



Rule creation

Basic application for create new rules and 
Classes

· Event driven - when adding a new component or changing in design 
takes place

· This action together with some information the user has to provide 
generate new .dfa files with a specific class that 

· A template .txt file contains a standard .dfa class 
· With a KF algorithm the new class is build from the template and the 

user entries
· The class is instantly available to the system

-> The system extends itself



Example of a self extending KF application - ICE

Usage for first complexity estimations of 
machined and assembled parts for possible 
cost 

· Start with an empty KF application (integrated complexity estimation –
ICE)

· Definition of types of machining (milling, welding etc.) is done, when 
needed

· Usage of a KF application to define the types of machining on 
geometry with following information:

· Mask (which geometry should be selected, edge, face, body, …)
· Analysis type (welding, cutting = length of edges, milling = area)
· Simplified costs per unit (welding, single side = 450€ / m)

· Attributes of are written on geometry
· Machining types are saved in .dfa file for further usage in ICE or other 

applications



Examples

• Here: Rotor of a generator
• cutted
• welded
• milled rotary
• milled plane

• Within an assembly single 
geometry (edges, faces, etc.) 
is selected 

• Manufacturing type is assigned

• Assigning one component, all
same components have the 
same information (saves clicks)



Examples

If manufacturing type not available,
new manufacturing definition 

can be created

This results in a new .dfa file 
with a new class and new rules,
that are instantly available to the system



Examples

• ICE collects all available assigned
information on the assembly

• Sums up specific analysis results
specifically to the manufacturing type

• Result shows a simple
manufacturing complexity of parts

• Results can be reported 
(standard KF)

• If design changes are made,
results vary and may show 
better or worse solutions for 
manufacturing



Summary

· ICE can provide a simple way to estimate complexity of design 
in terms of manufacturing (costs) while designing · ICE is self extending· Created rules are simple, but can be used further on from other 
KF applications· Might be useful in local and central usage of KF-classes

· To create more complex rules continuous logging should be 
used· Hard to build applications, that extend themselves in an 
intelligent way (might be an AI approach)· Next step would be a self-learning system· Further research necessary 

· Discussion welcome!



Thank you for your attention

If there are any questions, please ask!If there are any questions, please ask!

Dipl.-Ing. Guido Klette 
Information Technologies in Mechanical Engineering
Otto-von-Guericke University, Magdeburg
Universitaetsplatz 2
39106 Magdeburg, Germany
guido.klette@mb.uni-magdeburg.de Tel: ++49 391 67 18094

Dipl.-Ing. Guido Klette 
Information Technologies in Mechanical Engineering
Otto-von-Guericke University, Magdeburg
Universitaetsplatz 2
39106 Magdeburg, Germany
guido.klette@mb.uni-magdeburg.de Tel: ++49 391 67 18094

Live demonstration Live demonstration 


